Monatshefte für Chemie 113, 993-998 (1982)

Monatshefte für Chemie Chemical Monthly © by Springer-Verlag 1982

Synthesis of 5,7,11 b,12-Tetrahydro-isoindolo[2,1—b]isoquinolinium Methiodides and Their *Stevens* Rearrangement¹

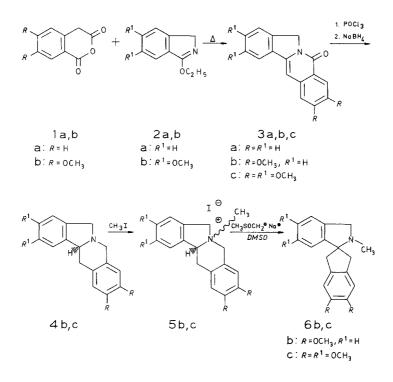
Vassil I. Ognyanov^a, Marietta A. Haimova^{b,*}, and Nikola M. Mollov^a

^a Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia 1113

^b Faculty of Chemistry, University of Sofia, 1126 Sofia, Bulgaria

(Received 19 November 1981. Accepted 9 December 1981)

The title compounds **5** were synthetized in two steps from the corresponding isoindolo[2,1—b]isoquinoline-5(7H)-ones **3**, obtained in high yields from 3ethoxy-1*H*-isoindoles **2** and homophthalic anhydrides **1**. The *Stevens* rearrangement of **5** gave 2-methyl-2,3-dihydro-1*H*-isoindole-1-spiro-2'-indanes **6**.


[Keywords: Homophthalic anhydrides; Isoindolo[2,1—b]isoquinoline-5(7H)-ones; 2-Methyl-2,3-dihydro-1H-isoindole-1-spiro-2'-indanes; Stevens rearrangement; 5,7,11b,12-Tetrahydro-1H-isoindolo[2,1—b]isoquinolines]

Synthese von 5,7,11b,12-Tetrahydro-isoindolo[2,1—b]isochinolinium Methiodiden und ihre Stevens-Umlagerung

Die Titelverbindungen **5** wurden in zwei Stufen aus den entsprechenden Isoindolo[2,1-b]isochinolin-5(7*H*)-onen (**3**) dargestellt, die ihrerseits in hohen Ausbeuten aus 3-Ethoxy-1*H*-isoindolen (**2**) und Homophthalsäureanhydriden erhältlich sind. Die *Stevens*-Umlagerung von **5** führte zu 2-Methyl-2,3-dihydro-1*H*-isoindol-1-spiro-2'-indanen (**6**).

The isoindolo[2,1—b]isoquinoline-5(7H)-ones $3a^2$, 3b and 3c were obtained from the homophthalic anhydrides 1a, b and the lactim ethers $2a^3$ and 2b in yields of 74 to 75% as an extension of the recently described method for preparation of isoquinolinone derivatives⁴. From 3b, c the 5,7,11 b,12-tetrahydro-isoindolo[2,1—b]isoquinolines $4b^5$ and 4c were obtained in analogy to a known procedure⁶ in yields of 84 to 85%. The compounds 4b and 4c were transformed into the corresponding diastereomeric mixtures of the methiodides 5b and 5c, which were resolved into the pure isomers (*cis*-5b, c and *trans*-5b, c) by fractional recrystallization. In agreement with⁷, on the basis of the ¹H-NMR spectra, the *cis* configuration was ascribed to the isomers with higher, and *trans* configuration to the isomers with lower melting points respectively.

It is known, that the *Stevens* rearrangement of quaternary salts of the type **5** with phenyllithium results in the formation of pavine

structures in moderate yields^{8,9}. It was shown recently, that dimsylsodium (DMSO + NaH) is an excellent reagent for the *Stevens* rearrangement¹⁰. The diastereomeric mixtures **5b** and **5c**, if treated with dimsylsodium—in analogy to the rearrangement of berbinium methiodides into spirobenzylisoquinolines¹⁰—gave rise to 2-methyl-2,3-dihydro-1*H*-isoindole-1-spiro-2'-indanes (**6b**, **c**) in yields of 50%.

The *Stevens* rearrangement of the diastereomeric mixture 5c with phenyllithium in diethyl ether or higher boiling inert solvents failed, leading only to the formation of traces of 6c and the pavine alkaloid (\pm) -argemonine. The latter was isolated and identified by a direct comparison with an authentic sample¹¹.

Experimental

All melting points are uncorrected. The IR spectra were recorded on a Specord 71-IR instrument using 1% chloroform solutions. The ¹H-NMR spectra were taken on a Tesla BS-487-C (80 MHz) or Jeol JNM-PS-100 spectrometers with TMS as internal standard.

The 5,6-dimethoxy-3-ethoxy-1*H*-isoindol (2b) was obtained from 5,6-dimethoxy-2,3-dihydro-1*H*-isoindol-1-one¹² (30 mmol) by alkylation with triethyloxonium tetrafluoroborate (60 mmol) in boiling dichloroethane analogously to the synthesis of $2a^3$.

The isoindolo[2,1—b]isoquinoline-5(7H)-ones **3** a, b, c were obtained from **1** a, b (2 mmol) and **2** a, b (2.2 mmol) in dry chlorobenzene analogously to⁴, and purified by recrystallization.

The methiodides 5b, c were obtained as a crude diastereomeric mixtures in quantitative yields from 4b, c (2 mmol) and methyliodide (10 mmol) in dry benzene. *Cis*-5b and cis-5c were obtained after two recrystallizations of 5b and 5c from dry methanol. From the combined mother liquors after evaporation of the solvent, *trans*-5b was isolated by fractional recrystallization from dry methanol—dry ether, and *trans*-5c from dry methanol.

The 2-methyl-2,3-dihydro-1*H*-isoindole-1-spiro-2'-indanes **6b**, **c** were obtained by treatment of **5b** or **5c** with dimsylsodium. From **4b** or **4c** (2 mmol) were prepared as above crude diastereomeric mixtures **5b** or **5c**, which were dissolved in dry dimethylsulfoxide (12 ml). The so obtained solution was added dropwise during **15** min at room temperature into a stirred solution of dimsylsodium, prepared by heating at 75 °C of stirred mixture of sodium hydride (0.04 mol) and dry dimethylsulfoxide (12 ml) under dry nitrogen. After stirring for 3 h at room temperature and work-up¹⁰, the crude product was purified by a column chromatography on silica gel with ether—*n*-hexane or ether—methanol. Experimental data are summarized in the Table.

Acknowledgements

We are indebted to Dr. K. C. Rice, Department of Health, Education, and Welfare, National Institutes of Health, Bethesda, Maryland, U.S.A., for a gift of (\pm) -argemonine.

We would like also to thank BUL/77/009 project "Centre of Phytochemistry and Chemistry of Natural Products" of UNDP/BULGARIA/UNESCO for the partial support of this work.

References

- ¹ Presented as a preliminary report at the 8th International Congress of Heterocyclic Chemistry, Graz, Austria (August 23-28, 1981).
- ² Godfrey J. C., J. Org. Chem. 24, 581 (1959).
- ³ Petersen S., Tietze E., Liebigs Ann. Chem. 623, 166 (1959).
- ⁴ Haimova M. A., Ognyanov V. I., Mollov N. M., Synthesis 10, 845 (1980).
- ⁵ Kodama K., J. Pharm. Soc. Japan 63, 54 (1943); C. A. 45, 5169 b (1951).
- ⁶ Kametani T., Sugai T., Shoji Y., Honda T., Satoh F., Fukumoto K., J. Chem. Soc., Perkin Trans. II 1977, 1151.

(Continued on p. 998.)

Product	Yield [%]	mp [°C] (solvent)	$\operatorname{IR}_{[\operatorname{cm}^{-1}]}$	Molecular formula ^a	¹ H-NMR (8, ppm) (J in Hz)
2 b	81.3	106.107 (ether- n-C ₆ H ₁₄)	1610	${ m C}_{12}{ m H}_{15}{ m NO}_{3}$ (221.2)	1.53 (t, $J = 7.4$, 3 H, CH ₃); 3.95 (s, 6 H, 2 OCH ₃); 4.53 (q, $J = 7.4$, 2 H, OCH ₂); 4.54 (s, 2 H, H-1); 7.03 (s, 1 H, H-7); 7.06 (s, 1 H, H-4)-CDCl ₃ /80 MHz.
ಹ	74.8	$193 - 195^{ m b}$ (C ₆ H ₆ - n-C ₆ H ₁₄)	1 665	$C_{16}H_{11}NO$ (233.2)	5.05 (s, 2 H, H-7); 6.85 (s, 1 H, H-12); 7.0-7.9 (m, 7 H arom.); 8.43 (apparent d, 1 H, H-4)-CDCl ₃ /80 MHz.
3 b	75	245-247 (CHCl ₃ - CH ₃ OH)	1660	$C_{18}H_{15}NO_3$ (293.3)	$3.90 + 3.95 (2 s, 6 H, 2 OCH_3); 4.95 (s, 2 H, H-7); 6.68 + 6.75 (2 s, 1 H arom + H-12); 7.1-7.8 (m, 5 H arom.)-CDCl_3/80 MHz.$
3 c	74.2	248-250 (CHCl ₃ - CH ₃ OH)	1 665	$C_{20}H_{19}NO_5$ (353.4)	$\begin{array}{l} 4.10+4.15+4.20\;(3\mathrm{s},12\mathrm{H},4\mathrm{OCH}_3);\\ 5.45\;(\mathrm{s},2\mathrm{H},\mathrm{H}^{-7});7.28+7.38+7.53+\\ 7.70+7.90\;(5\mathrm{s},4\mathrm{H}\mathrm{arom}.+\mathrm{H}\text{-}12)\text{-}\mathrm{CF}_3\mathrm{CO}_2\mathrm{H}/\\ 80\;\mathrm{MHz}. \end{array}$
4 b	84.8	$154-156^{\circ}$ (C ₂ H ₅ OH)	$\begin{array}{c} 2716\\ 2770\\ 2785\end{array}$	$C_{18}H_{19}NO_2$ (281.3)	$2.6-4.4$ (m, 7 H, $3 \text{ CH}_3 + \text{H}-11 \text{ b}$); 3.83 (s, 6 H , 2 OCH_3); $6.58 + 6.77$ (2 s , 2 H , $\text{H}-1 + \text{H}-4$); 7.19 (s, 4 H arom.)-CDCl ₃ /80 MHz.
4 c	84.3	175-177 (C ₂ H ₅ OH)	$\begin{array}{c} 2720\\ 2770\\ 2790\end{array}$	$C_{20}H_{23}NO_4$ (341.4)	$2.6-4.3 \text{ (m, 7 H, 3 CH}_2 + \text{H-11 b}$; $3.86 \text{ (s, 12 H, 4 OCH}_3)$; $6.57 + 6.73 + 6.80 + 6.85 \text{ (4s, 4 H arom.)-CDC}_3/100 \text{ MHz}$.
ci.s- 5 b		231-232 ^d (CH ₃ OH)	1615	$C_{19}H_{22}NO_2I$ (423.3)	2.50 (s, 3 H, NCH ₃); 2.5-3.8 (m, 2 H, H-12); 3.47 + 3.50 (2 s, 6 H, 2 OCH ₃); 4.2-4.9 (m, 5 H, CH ₂ NCH ₂ + H-11 b); $6.47 + 6.57$ (2 s, H-1 + H-4); $6.9-7.3$ (m, 4 H arom.)- CF ₃ CO ₂ H/100 MHz.

 $Table \ I$

996

V. 1. Ognyanov et al.:

2.6.3.7 (m, 2H, H-12); 3.06 (s, 3H, NCH ₃); 3.47 + 3.53 (2 s, 6H, 2 OCH ₃); 4.23 + 4.54 (2 s, 4H, CH ₂ NCH ₂); 4.88 (t, $J = 6$, 1H, H- 11 b); 6.55 + 6.67 (2 s, 2 H, H-1 + H-4); 6.7-7.2 (m, 4H arom.)-CF ₃ CO ₂ H/100 MHz.	2.56 (s, 3 H, NCH ₃); 2.5-3.8 (m, 2 H, H-12); 3.52 + 3.54 + 3.56 (3 s, 12 H, 4 OCH ₃); 4.2- 4.9 (m, 5 H, CH ₂ NCH ₂ + H-11 b); 6.42 + 6.55 + 6.64 + 6.73 (4 s, 4 H arom.)-CF ₃ CO ₂ H/ 100 MHz.	2.6.3.8 (m, 2 H, H-12); 3.05 (s, 3 H, NCH ₃); 3.48 + 3.52 + 3.54 (3 s, 12 H, 4 OCH_3); 4.24 + 4.48 (2 s, 4 H, CH_2NCH_2); 4.76 (t, $J = 6$, 1 H, H-11 b); 6.41 + 6.51 + 6.58 + 6.64 (4 s, 4 H arom.)- $CF_3CO_2H/100$ MHz.	2.42 (s, 3 H, NCH ₃); 3.08 (q, $J_{gem} = 16$, 4 H, H-1' + H-3'); 3.83 (s, 6H, 2.0CH ₃); 3.93 (s, 2 H, CH ₂ N); 6.7-7.2 (m, 6 H arom.)- CDCl ₃ /100 MHz.	2.42 (s, 3 H, NCH ₃); 3.14 (q, $J_{\text{gem}} = 16$, 4 H, H-1' + H-3'); 3.78 (s, 2 H, CH ₂ N); 3.86 (s, 12 H, 4 OCH ₃); 6.43 (s, 1 H, H-7); 6.80 (s, 3 H arom.)-CDCl ₃ /100 MHz.
$C_{19}H_{23}NO_2I$ (423.3)	C ₂₁ H ₂₆ NO ₄ f (483.3)	$C_{21}H_{26}NO_4I$ (483.3)	$C_{19}H_{21}NO_2$ (295.4)	$C_{21}H_{25}NO_4$ (355.4)
1615	1615	1615	1615	1615
160-162 (CH ₃ OH ether)	252-254 (CH ₃ OH)	144-146 (CH ₃ 0H)	120-122 $(n-C_6H_{14})$	164-166 ($C_6H_{6^-}$) n - C_6H_{14})
			50e	50.2e
trans-5 b	cis- 5 c	trans- 5 c	6 b	о 9

^a Elemental analyses are in full agreement with the calculated values. ^b Ref.² mp. 193-194 °C ($G_6H_6-m-G_6H_{14}$). ^c Ref.⁵ mp. 154 · 156 °C ($G_2H_5OH--H_2O$). ^d Ref.⁵ mp. 231 · 232 °C (CH_3OH). ^e Calculated overall yield from **4 b**, **c**.

998 V. I. Ognyanov et al.: Tetrahydro-isoindolo-isoquinolinium Methiodides

(Continued from p. 995.)

- ⁷ Brewster J. H., Jones R. S., J. Org. Chem. 34, 354 (1969).
- ⁸ Wittig G., Tenhaeff H., Schoch W., Koenig G., Liebigs Ann. Chem. **572**, 1 (1951).
- ⁹ Ito K., Furukawa H., Iida T., Lee K.-S., Soine T., J. Chem. Soc. Chem. Commun. **1974**, 1037.
- ¹⁰ Kano S., Yokomatsu T., Ono T., Takahagi Y., Shibuya S., Chem. Pharm. Bull. 25, 2510 (1977).
- ¹¹ Rice K. C., Ripka W. C., Reden J., Brossi A., J. Org. Chem. 45, 60 (1980).
- ¹² Kametani T., Honda T., Inoue H., Fukumoto K., J. Chem. Soc., Perkin Trans. I 1976, 1221.